SBI PO Simplification Questions and Answers Quiz 5


Advertisements
     
     
     
    1 . Directions (1-5): What will come in place of the question mark (?) in the following questions?

    $Q.$ (5 × 7)%of (34 × 55) + 456.60 = 699.1 + ?

    A.   412
    B.   422
    C.   418
    D.   428
    2 . $14 \times 627 \div \sqrt{1089} = (?)^3 + 141$

    A.   5$\sqrt{5}$
    B.   (125)$^3$
    C.   25
    D.   5
    3 . 2$1.5\over5$ + 2$1\over6$ - 1$3.5\over15$ = $(?)^{1\over3}\over4$ + 1$7\over 30$

    A.   2
    B.   8
    C.   512
    D.   324
    4 . (80 x 0.40)$^3$$\div$(40 x 1.6)$^3$$\times$(128)$^ 3$ = (2)$^{? + 7}$

    A.   25
    B.   11
    C.   12
    D.   18
    5 . $(\sqrt{7} + 11)^2 = (?)^{1\over 3}$ + 2$\sqrt{847}$ + 122

    A.   36 + 44$\sqrt{7}$
    B.   6
    C.   216
    D.   36
    6 . Directions (6-10): What will come in place of the question mark (?) in the following questions?

    $Q.$ $1\over 6$ of 92 $\div$ of 1$1\over23$ of (650) = 85 + ?

    A.   18
    B.   21
    C.   19
    D.   28
    7 . 92 x 576 $\div (\sqrt{1296}) = (?)^3 + \sqrt{49}$

    A.   3
    B.   (9)$^2$
    C.   9
    D.   27
    8 . 3$1\over 4$ + 2$1\over 2$ - 1$5\over 6$ = $(?)^2\over 10$ + 1$5\over 12$

    A.   25
    B.   $\sqrt{5}$
    C.   15
    D.   5
    9 . $(\sqrt{8}\times\sqrt{8})^{1\over 2} + (9)^{1\over2} = (?)^3 + \sqrt{8} - 340$

    A.   7
    B.   19
    C.   18
    D.   9
    10 . $(15 \times 0.40)^4\div(1080 \div 30)^4 \times(27 \div 8)^4 = (3 \times 2)^{? + 5}$

    A.   8
    B.   3
    C.   12
    D.   16
      Answers & Solutions
       
      1 .    
      Answer : Option A
      Explanation :
      $34\times55\times5\times7\over100$ + 456.60 = 699.1 + ?
      $\Rightarrow$654.50 + 456.60 = 699.1 + ?
      $\Rightarrow$1111.1 = 699.1 + ?
      $\Rightarrow$? = 1111.1 – 699.1 = 412
      2 .    
      Answer : Option D
      Explanation :
      14 × 627 ÷ 33
      $\Rightarrow$$ ?^ 3$ + 141
      $\Rightarrow$ $14\times627\over33$ - 141 = ?$^3$
      $\Rightarrow$266 – 141 = ?$^3$
      $\Rightarrow$125 = ?$^3$
      ? = $\sqrt[3]{125}$ = $\sqrt[3]{5\times5\times5}$ = 5
      3 .    
      Answer : Option C
      Explanation :
      2 + $1.5\over5$ + 2 + $1\over6$ - 1 - $3.5\over15$ = $(?)^{1\over3}\over4$ + 1 + $7\over 30$
      $\Rightarrow$ 2 + $15\over50$ + 2 + $1\over6$ - 1 - $35\over 150$ - 1 - $7\over 30$ = $(?)^{1\over3}\over4$
      $\Rightarrow$( 2 + 2 - 1 - 1 ) + $3\over 10$ + $1\over 6$ - $7\over 30$ - $7\over 30$ = $(?)^{1\over3}\over4$
      $\Rightarrow$2 + [$9 + 5 - 7 - 7 \over 30$] = $(?)^{1\over3}\over4$
      $\Rightarrow$2 + 0 = $(?)^{1\over3}\over4$
      $\Rightarrow$ $(?)^{1\over3}$ = 2 x 4 = 8
      $\Rightarrow$? = 8$^3$ = 8 x 8 x 8 = 512
      4 .    
      Answer : Option B
      Explanation :
      (80 x 0.40)$^3$$\div$(40 x 1.6)$^3$$\times$(128)$^ 3$ = (2)$^{? + 7}$
      $\Rightarrow$(32)$^3$$\div$(64)$^3$$\times$(128)$^ 3$ = (2)$^{? + 7}$
      $\Rightarrow$$(2^5)^3$$\div$$(2^6)^3$$\times$$(2^7)^ 3$ = (2)$^{? + 7}$
      $\Rightarrow$$(2^{15})\div (2^{18})\times(2^{21})$ = (2)$^{? + 7}$
      $\Rightarrow$$(2^{15 - 18 + 21})$ = (2)$^{? + 7}$
      $\Rightarrow$$(2^{18})$ = (2)$^{? + 7}$
      $\Rightarrow$18 = ? + 7
      $\Rightarrow$? = 18 - 7 = 11
      Here,
      $[$ $(a^m)^n$ = $a^{mn}$ $ ; \,\,\, a^m \times a^n = a^{m + n} ; \,\,\, a^m \div a^n = a^{m - n} $ $]$
      5 .    
      Answer : Option C
      Explanation :
      $(\sqrt{7} + 11)^2 = (?)^{1\over 3}$ + 2$\sqrt{847}$ + 122
      $\Rightarrow$ $(\sqrt{7})^2 + (11)^2 $+ 2$\sqrt{7}$ $\times 11$ = $(?)^{1\over 3}$ + 2$\sqrt{847}$ + 122
      $\Rightarrow$ $(?)^{1\over 3}$ = 128 - 122 = 6
      ? = 6 x 6 x 6 = 216
      6 .    
      Answer : Option C
      Explanation :
      650 $\times$ $ 24\over 23$ $\times$ $92\over 100$ $\times$ $1\over 6$ = 85 + ?
      $\Rightarrow$ 104 = 85 + ?
      $\Rightarrow$ ? = 104 - 85 = 19
      7 .    
      Answer : Option C
      Explanation :
      92 x 576 $\div (\sqrt{1296}) = (?)^3 + \sqrt{49}$
      $\Rightarrow$ 92 x 576 $\div (\sqrt{1296}) = (?)^3 + 7$
      $\Rightarrow$ 736 = ?$^3$ + 7
      $\Rightarrow$ ?$^3$ = 736 - 7 = 729 = 9$^3$ $\Rightarrow$ ?$^3$ = $(9^3)^{1\over3}$ = 9
      8 .    
      Answer : Option D
      Explanation :
      3 + $1\over 4$ + 2 + $1\over 2$ - 1 - $5\over 6$ = $(?)^2 \over 10$ + 1 + $5\over 12$
      $\Rightarrow$ 3 + 2 - 1 - 1 + $[$ $1\over 4$ + $1\over 2$ - $5\over 6$ - $5\over 12$ $]$ = $(?)^2\over 10$
      $\Rightarrow$ 3 + $[$ $ 3 + 6 - 10 - 5 \over 12 $ $]$ = $?^2\over 10$
      $\Rightarrow$ 3 - $1\over 2$ = $?^2\over 10$
      $\Rightarrow$ $5\over 2$ = $?^2\over 10$
      $\Rightarrow$ $?^2$ = $5 \times 10 \over 2$ = 25
      ? = $\sqrt{25}$ = 5
      9 .    
      Answer : Option A
      Explanation :
      $(\sqrt{8}\times\sqrt{8})^{1\over 2} + (9)^{1\over2} = (?)^3 + \sqrt{8} - 340$
      $\Rightarrow$ 8$^{1\over 2} + 3 = (?)^3 + 8{1\over2}$ - 340
      $\Rightarrow$ = 340 + 3 = 343
      ? = $\sqrt[3]{343}$ = 7
      10 .    
      Answer : Option B
      Explanation :
      $(15 \times 0.40)^4\div(1080 \div 30)^4 \times(27 \div 8)^4 = (3 \times 2)^{? + 5}$
      $\Rightarrow$ $6^4 \div (36)^4 \times (216)^4 = (3 \times 2)^{? + 5}$
      $\Rightarrow$ $6^4 \div (6)^8 \times (6)^12 = (6)^{? + 5}$
      $\Rightarrow$ $6^{4 - 8 + 12} = (6)^{? + 5}$
      $\Rightarrow$ $6^{8} = (6)^{? + 5}$
      $\Rightarrow$ ? + 5 = 8
      $\Rightarrow$ ? = 8 - 5 = 3

      Advertisements


      0 comments:

      Post a Comment

      Follow On Google plus