| **Answers & Solutions ** | | 1 . | Answer : Option D | Explanation : | Reqd % = $17000 - 9000 \over 9000$ x 100 = 88 $8\over 9$% | | | 2 . | Answer : Option D | Explanation : | $A_{2008}$ = 20000 x $81\over 100$ 16200
$A_{2008}$ = 12000 x $75\over 100$ 9000
Reqd % = $16200 \over 9000$ x 100 = 180 % | | | 3 . | Answer : Option B | Explanation : | Unsold cycle $\Rightarrow$ = 15000 × 0.36 + 12000 × 0.25 + 15000 × 0.28 + 18200 × 0.40 + 15000 × 0.16 + 18000 × 0.08 = 5400 + 3000 + 4200 + 7280 + 2400 + 1440 = 23720 | | | 4 . | Answer : Option B | Explanation : | $B_{2007}$ = $15000 - 12000\over 12000$ x 100 = 25 %
$B_{2008}$ = $18200 - 15000\over 15000$ x 100 = 21.3 %
$B_{2010}$ = $18000 - 15000\over 15000$ x 100 = 20 %
| | | 5 . | Answer : Option C | Explanation : | Difference between sold cycles (A - B) in 2005 $\rightarrow$ 9600 - 8750 = 850 2006 $\rightarrow$ 9000 - 5940 = 3060 2007 $\rightarrow$ 13260 - 10800 = 2460 2008 $\rightarrow$ 16200 - 10920 = 5280 2009 $\rightarrow$ 12600 - 9100 = 3500 2010 $\rightarrow$ 16560 - 12480 = 4080 | | | 6 . | Answer : Option C | Explanation : | Males in $D_1$ = $9000 x 18 \over 100$ x $7 \over 20$ = 567 Similarly, $D_2$ = 609 $D_3$ = 488 $D_4$ = 726 $D_5$ = 351 $D_6$ = 969 $D_7$ = 240 Total no.of males = 3950 | | | 7 . | Answer : Option D | Explanation : | Total employees in $D_3$ = 9000 x $12.2\over 100$ = 1098
Females in $D_3$ = 1098 x $5\over 9$ = 610 Req d % = $610 \over 1098$ x 100 = 55.55 % | | | 8 . | Answer : Option D | Explanation : | Ratio of males to females in Department $D_7$ = M : F = 8 : 13
Reqd % = $(13 - 8)\over 8$ x 100 = 62.5 % | | | 9 . | Answer : Option C | Explanation : | $D_1$ = 9000 x $18\over 100$ = 1620
Male : Female = 7 : 13
Difference = 1620 x $(13 - 7)\over 20$ = 486
Similarly, $D_2$ = 1305 x $1\over 15$ = 87
$D_3$ = 1098 x $1\over 9$ = 122
$D_4$ = 1485 x $1\over 45$ = 33
$D_5$ = 810 x $4\over 30$ = 108
$D_6$ = 2052 x $2\over 36$ = 114
$D_7$ = 630 x $5\over 21$ = 150
| | | 10 . | Answer : Option C | Explanation : | Females in $D_1$ = $9000 \times 18\over 100$ x $13\over 20$ = 1053 Similarly, $D_2$ = 696 $D_3$ = 610 $D_4$ = 759 $D_5$ = 459 $D_6$ = 1083 $D_7$ = 390 Total females = 1053 + 696 + 610 + 759 + 459 + 1083 + 390 = 5050
Reqd % = $5050\over 9000$ x 100 = 56.11 % | | | | |

## 0 comments:

## Post a Comment